Neurite Outgrowth and Protein Phosphorylation in Chick Embryonic Sensory Ganglia Induced by a Brief Exposure to 12-O-Tetradecanoylphorbol 13-Acetate

Sujata Mehta, *Ilda Hsu, †Arco Y. Jeng, and Kuang Yu Chen

Department of Chemistry, Rutgers University, Piscataway; †Department of Biology, Seton Hall University, South Orange. *Research Department, Pharmaceuticals Division, Ciba-Geigy Corporation, Summit, New Jersey, U.S.A.

Abstract: An exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) at 20 nM for as short as 30 min was sufficient to elicit neurite outgrowth from explanted chick embryonic sensory ganglia. Attachment of the ganglia to the collagen-coated substratum during exposure to TPA was essential for subsequent neurite outgrowth. Pulse-labeling with [3H]-methionine indicated no significant difference in protein synthesis between control and TPA-treated ganglia. In vitro phosphorylation assay revealed a prominent protein kinase C substrate with an apparent molecular mass of 66,000 daltons (66 kDa) in chick embryonic ganglia extracts. Treatment of intact ganglia with TPA for 30 min also specifically stimulated the phosphorylation of the same protein. When staurosporine, a potent inhibitor of protein kinase C, was present during TPA treatment, both neurite outgrowth and the phosphorylation of the 66-kDa protein were blocked. Biochemical analysis of the phosphorylated 66-kDa protein indicated that (1) phosphorylation was only in serine residue; (2) the pl value was 4.5; (3) after V8 protease digestion, two phosphorylated peptide fragments, 6.0 and 7.5 kDa in Mr, were produced; and (4) it is cross-reacted with an antibody raised against a 66-kDa neurodafoneubment subunit from rat sciatic cord. These results suggest that early activation of protein kinase C and the phosphorylation of the 66-kDa protein may be involved in neuritogenesis. Key Words: Neurite outgrowth—Phosphorylation—Protein Kinase C—Sensory ganglia—Phorbol esters. Mehta S, et al. Neurite outgrowth and protein phosphorylation in chick embryonic sensory ganglia induced by a brief exposure to 12-O-tetradecanoylphorbol 13-acetate. J. Neurochem. 60, 972–981 (1993).

Phorbol esters can bind and activate calcium-sensitive and phospholipid-dependent protein kinase C (PKC) (Castagna et al., 1982; Kikkawa et al., 1982) due to their structural similarity to diacylglycerols, the endogenous activators of PKC (Sharkey et al., 1984). Activation of PKC has been correlated with neuronal functions including regulation of neurotransmitter release (Malenka et al., 1986), ion conductance (Baraban et al., 1985), as well as modification of neuronal plasticity (Koutenburg et al., 1985) and outgrowth from both central and peripheral neurons (Burgess et al., 1986; Meiri et al., 1988). Using explanted sensory ganglia from chick embryos, we have shown that the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), is a potent neurite-promoting agent (Hsu et al., 1984; Hsu, 1989). The effects of TPA on neurite outgrowth are dose dependent. After 48 h of incubation at low concentrations of TPA (20 nM), long, thin radial fibers developed from the ganglia explant. At higher concentrations (160–480 nM), TPA produced highly fasciculated and shorter neurites. Other activators of PKC, such as synthetic diacylglycerols and phospholipase C, also elicit neurite development (Hsu et al., 1989), suggesting that activation of PKC is involved in axonal elongation.

The action of TPA is pleiotropic and complicated (Yamanaka, 1984). To further dissect and analyze the biochemical events underlying neurite outgrowth in TPA-treated ganglia, we have defined the minimal exposure time to TPA required for eliciting neurite outgrowth (Fujiwara, 1984). Phorbol esters and diacylglycerols are known to activate protein kinase C, leading to the phosphorylation of various cellular proteins. The phosphorylation of these proteins may result in changes in cell morphology, gene expression, and functions. In this study, we investigated the effects of TPA on the phosphorylation of a 66-kDa protein in chick embryonic sensory ganglia. We observed that the phosphorylation of this protein was dependent on the concentration of TPA and the length of exposure. The results suggest that the phosphorylation of this 66-kDa protein may be involved in the neurite outgrowth response induced by TPA.

Received June 10, 1992; revised manuscript received August 5, 1992; accepted August 7, 1992.
Address correspondence and reprint requests to Dr. K. Y. Chen at Department of Chemistry, Rutgers University, Piscataway, NJ 08854-8998, U.S.A.
growth. With the effective exposure time defined, the biochemical events immediately after TPA treatment can be analyzed from four experiments from the chronic effects of TPA. We have examined protein synthesis by pulse-labeling with [35S]methionine and protein phosphorylation pattern by in vivo phosphor-
lyation assay in ganglia explants after TPA treatment. The role of the neuite outgrowth in chick embry-
onic ganglia explants was determined through (1) the use of the inhibitor staurosporine in both morphologi-
cal and phosphorylation studies, (2) an identification of the 66-kDa protein to be a specific PKC substrate
both in vitro and in vivo, and (3) further biochemical analysis of the phosphorylated 66-kDa protein.

MATERIALS AND METHODS

Materials
Ten-day-old chick embryos were reared from fertile eggs
obtained from Avian Services (Fremont, CA, U.S.A.). Culture media and earle's balanced salt solution (EBRS)
were obtained from GIBCO (Grand Island, NY, U.S.A.). ITS Premix and collagen-coated 96-well cluster dishes were
obtained from Collaborative Research (Bedford, MA, U.S.A.). Pro-
gestone, TPA, N\'5-O\'dibutyrylthiadenosine 3',5'-cyclic monophosphate (dbcAMP), 1-oleoyl-2-acetyl-sn-glycero-
(OGP), phosphatidytholine (PS), and staurosporine were obtained from Sigma (St. Louis, MO, U.S.A.). Radiolabe-
films were from Kodak (Rochester, NY, U.S.A.).

Tissue culture and TPA treatment
Sensory ganglia from 10-day-old chick embryos were ex-
planted and maintained in control medium consisting of
Ham's F12 supplemented with defined growth factors in-
cluding 4 μg/ml of insulin, 5 μg/ml of transferrin, 5 μg/ml of
vitamin (ITS Premix), and 6.28 mg/ml of progestone for
18 h. To test the effects of TPA, these explants were treated
with TPA for various time periods. After treatment with
TPA, the explants were thoroughly rinsed three times with
Ham's F12 medium, and then transferred to the fresh control
medium until the end of the culture period of 48 h. The
explants were then fixed and silver-stained to determine the
extent of neuite outgrowth (Hsu et al., 1984). Neurite
length and density based on positive silver staining for
nerves fibers were measured and ranked (Hsu et al., 1984). Differ-
ences in the mean neurite length and density of control and
TPA-treated groups were subjected to analysis of variance
by the Mann-Whitney U test. For each time point and dose
concentration, duplicate samples were tested. These experi-
ments were repeated at least four times.

Protein synthesis
Explanted ganglia (four per well) were treated with 0, 200, and 800 nM TPA in control medium for specific time
periods. The medium was removed and the ganglia were
pulsed-labeled with [35S]methionine (5 μCi/ml 0 μl/specific
activity, 106 Ci/mmol) in methionine-free EBRS for 30
min. After washing with cold methionine (1 mM), ganglia
were resuspended and homogenized in a buffer containing 1
mM-Tris-HCl (pH 7.5), 5 mM NaCl, 10 mM EGTA, 1 mM
MgCl2, 2 mM dithiothreitol (DTT), and 1 mM phenyl-
leucylalanine fluoride (PMSF). The ganglia homogenate
was mixed with one-fifth volume of sodium deoxycholate
(SDC) to stop solubilization containing 50 mM Tris-HEPES,
10% β-mercaptoethanol, 50% sucrose, 1% SDS, and 0.005%
pyronin Y. Samples were boiled for 5 min and equal
amounts of protein at determined by the Bio-Rad micro-
protein (Bradford, 1976) were applied onto a 12% polyacyl-
amide gel. Autoradiograms were made by exposing the
dried gels to Kodak x-ray film.

In vitro phosphorylation of proteins
Cell free phosphorylation was performed in ganglia or brain homogenates using exogenously added PKC. The gan-
glia and brain homogenates were subjected to mild heat
stabilization (60°C, 5 min) to inactivate endogenous kinases
(Vermes and Chen, 1986). The heat-treated homogenates
were added to the assay mixture (75 μl) containing 50 mM
Tris-HCl (pH 7.5), 1 mM DTT, 5 mM MgCl2, 100 mM NaCl,
and 50 μM [gamma-32P]ATP (4,500 Ci/mmol). PKC puri-
ﬁed from embryonic chick brain (Jeng et al., 1986) was
added to the mixture to initiate phosphorylation. About 0.5
units (1 unit = 1 nmol/min) of PKC was used in each assay.
Incubation was performed at 30°C for 15 min and termi-
nated by adding one-fifth volume of SDS stop solution. The
pattern of protein phosphorylation was analyzed by SDS-
polyacrylamide gel electrophoresis (PAGE) and autoradi-
ography.

Intact ganglia phosphorylation
In vivo phosphorylation was performed by treating the ganglia explants (four well per) with 0, 200, and 800 nM TPA, or
1 μM dbcAMP in control medium for 1 h followed by labeling with
[gamma-32P]ATP (1 μCi/ml) for 30 min. Subsequently, gan-
glia were washed with phosphate-buffered saline and sus-
pended and homogenized in a buffer containing 5 mM Tris-
HCl (pH 7.5), 5 mM NaCl, 10 mM EGTA, 1 mM MgCl2,
1 mM PMSF, 50 μM of leupeptin, 0.5 mM DTT, 0.5 mM
Na2VO3, and 20 mM NaF. Equal amounts of protein (2–4
μg) were loaded in each lane. Autoradiograms of TPA-treated ganglia were analyzed by SDS-PAGE and autoradiography.

Protein kinase inhibitor studies
Staurosporine, a potent inhibitor of PKC (Tamaoki et al.,
1986), was dissolved in dimethyl sulfoxide (DMSO) and
further diluted in F12 medium. DMSO alone at the concen-
trations used had no effect on neuite outgrowth. The effects of staurosporine were tested alone, or together with 200
nM TPA for the duration of the short exposure period or for the
entire 48 h in culture. In some experiments, the inhibitor
was added to ganglia culture before or after the exposure to
TPA. Morphometric analysis of neuite outgrowth was per-
formed to determine the inhibitory effect.

Biochemical analysis of the phosphorylated 66-kDa protein
The pH of the phosphorylated protein was determined by using the Phast System IEF electrophoresis (Pharmacia) on a precast IEF 3-9 Phast gel. Peptide mapping after limited proteolysis using Staphylococcus aureus V8 protease was performed using the phosphorylated 66-kDa band excised from SDS gels according to the procedure described by
Cleveland et al. (1977). The phosphorylating activity of the
protein was examined by hydrolyzing the phosphoryl-
ated protein band excised from the gel in 6 M HCl and
analyzing the hydrolysates by electrophoresis on a cellulose
J. Neurochem., Vol 60, No. 3, 1993
skin layer plate. The position of the radioactive spot on the autoradiogram was compared with that of standard phenylalanine acids (Phe, Tyr, and Phe Tyr) visualized by ninhydrin staining.

Immunoprecipitation

Immunoprecipitation was performed according to the procedure described by Nestler and Greenberg (1980). In brief, ganglia extracts were phosphorylated in vitro and mixed with a 1% suspension of protein A-bearing Staphylococcus aureus (SAC). After 15 min of mixing, 10 μl of supernatant was mixed with antibody for 30 min at room temperatur followed by an incubation with an equal volume of SAC suspension (1%) for another 30 min. The mixture was then centrifuged and the pellet was washed five times. The washed SAC pellet was subjected to SDS-PAGE. Antibodies used in the present study included anti-rat NF64 polyclonal antibody (Chiu et al., 1989); anti-β-hoe brain 87kDa PKC substrate polyclonal antibody (Adreim et al., 1988), anti-68kDa antibody (Sagil and Tatum, 1988), and anti-GAP43 antibody (Moos et al., 1988). Anti-rat NF64 antibody recognizes a unique neuronal intermediate filament protein, but does not cross-react with neurofilament (NF) triplet proteins including NF-L, NF-M and NF-H. A monoclonal antibody developed against B. burgdorferi flagellin, cross-react with a 68kDa protein in human neuroblastoma cells, but not with NF-L, H, Sagil personal communication).

RESULTS

Minimal exposure time to TPA for morphological differentiation

Ganglia explants in control medium developed few or no neurites after 48h of incubation. The outgrowth from the core of these explants consisted mostly of non-neuronal cells (Fig. 1A). In contrast, ganglia explants treated with 20 nM TPA for a duration of only 30-60 min exhibited long and extensive neurites, comparable with that produced by incubating explants with TPA for the entire culture period (Fig. 1B and C vs. D). Figure 1E shows that such ganglia produced distinctly enhanced neurite outgrowth even after an exposure to TPA (200 nM) for as short a time as 10 min. Such neurite development was comparable, but not as extensive as that caused by exposure to TPA for the entire 48-hour period (Fig. 1E vs. H). Brief exposure to TPA at higher concentrations (100-600 nM) for 30 min produced denser outgrowths and obvious fasciculation (Fig. 1F; also see Table 1). But beyond the 30-minute exposure period, continuous presence of high concentrations of TPA in culture did not appear to significantly affect neurite density (Fig. 1G and H). The addition of TPA at concentrations of >800 nM reduced neurite density (Table 1) even though the exposure time was only 30 min.

The attachment of ganglia to the substratum during the 30-minute period of exposure to TPA appeared to be essential for neurite outgrowth. Unattached ganglia that were exposed to TPA for 30 min and then explanted on collagen-coated wells did not develop any detectable neurite outgrowth (Fig. 2A). The lack of response to TPA in these ganglia explants appeared to be solely related to their unattached state during the exposure period. When these same ganglia explants were reexposed to TPA, neurite outgrowth was subsequently observed (Fig. 2B).

Effect of staurosporine on TPA-induced ganglia differentiation

The addition of staurosporine, an inhibitor of PKC (Tamaoki et al., 1986), to control medium for 30 min or for 48 h had no effect on neurite outgrowth (Fig. 3A and B). The morphology of the staurosporine -treated ganglia explants was essentially identical to control explants (Fig. 3A vs. Fig. 1A). However, when staurosporine was added together with TPA for a duration of either 30 min or 48 h, neurite outgrowth induced by TPA was significantly reduced (Fig. 3C and D vs. Fig. 1F and H). If staurosporine was added after TPA was removed from the incubation medium, neurite outgrowth induced by brief exposure to TPA was unaffected (Fig. 3E). The inhibitory effect of staurosporine was specific for TPA-induced neurite outgrowth. Neurite outgrowth induced by 1 mM db-cAMP was unaffected by treatment with staurosporine (Fig. 3F).

Protein synthesis

By using radioactive precursors as metabolic labeling agents in as few as two ganglia explants per sample, we were able to examine protein synthesis by pulse-labeling in control and TPA-treated explants. Figure 4 showed that there was no qualitative difference in radioactively labeled proteins between the control and TPA-treated samples, nor was there any difference in ganglia that were treated with low (20 nM) or high (200 nM) concentrations of TPA. Even samples from explants exposed to inhibitory doses of TPA (800 nM) exhibited the same pattern of newly synthesized proteins. Furthermore, the protein pattern remained the same whether the treatment of TPA was for 1 or 6 h before pulse-labeling with [35S]-methionine (Fig. 4; lanes 2-4 vs. lanes 6-8). Gurrols and Schuster (1979) have reported that no significant qualitative change in protein synthesis occurred in pheochromocytoma (PC12) cells that were induced to differentiate neurites by treatment with NGF. Bloom and Bick (1979) have also shown that superior cervical ganglia explants generated neurites despite inhibition of both RNA and protein synthesis. In light of these studies, we did not pursue further possible minor differences in protein synthesis using two-dimensional gels.

PKC protein substrate identified by in vitro phosphorylation

Partially purified PKC devoid of all other kinase activities was used as the sole source of kinase to identify specific substrate proteins in chick embryo ganglia extracts. We have previously reported that a brief, mild heat treatment (60°C, for 5 min) inactivates all

FIG. 1. Effect of exposure time to TPA on neurite outgrowth in chick embryonic sensory ganglia explants. Ganglia were exposed to TPA at 20 or 200 nM for various times and then incubated in the control medium for a 48-h culture period. At the end of the 48-h culture period, neurite outgrowth was examined morphologically. A: Ganglia in control medium without TPA. B: Ganglia exposed to 20 nM TPA for 30 min. C: Ganglia exposed to TPA (20 nM) for 60 min. D: Ganglia exposed to TPA (200 nM) for 48 h. E: Ganglia exposed to TPA (200 nM) for 10 min. F: Ganglia exposed to TPA (200 nM) for 30 min. G: Ganglia exposed to TPA (200 nM) for 60 min. H: Ganglia exposed to TPA (200 nM) for 48 h.
TABLE 1. Effect of dose concentration of TPA on neurite density

<table>
<thead>
<tr>
<th>TPA (nM)</th>
<th>Mean neurite density (Ranking ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.05 ± 0.17</td>
</tr>
<tr>
<td>100</td>
<td>2.35 ± 0.17</td>
</tr>
<tr>
<td>200</td>
<td>3.01 ± 0.12</td>
</tr>
<tr>
<td>400</td>
<td>2.20 ± 0.20</td>
</tr>
<tr>
<td>600</td>
<td>2.08 ± 0.15</td>
</tr>
<tr>
<td>1,000</td>
<td>2.00 ± 0.38</td>
</tr>
<tr>
<td>1,000</td>
<td>1.67 ± 0.24</td>
</tr>
</tbody>
</table>

* Chick embryonic ganglia explants were treated with TPA at indicated concentrations for 30 min and then assayed for morphological differentiation 48 h later as described in Materials and Methods. Mean neurite density is based on ranking of 10 ganglia explants per treatment group after 48 h in coating medium. Neurite density is ranked as follows: 0 = no neurite, 1 = sparse, 2 = moderate, 3 = dense, as previously described (Hsu et al., 1984; Hsu, 1989). All TPA-treated groups were significantly different from the control group in neurite density (p < 0.05) as analyzed by the Mann-Whitney U test. The TPA-treated groups from 20 to 600 nM were not significantly different from each other, but were significantly different from the high TPA-treated groups (800-1,000 nM) as analyzed by the Mann-Whitney U test.

endogenous kinase activities without affecting substrate activities (Verma and Chen, 1986). When PKC was added to heat-treated ganglia homogenate, a major protein band with an apparent molecular mass of 66 kDa was phosphorylated (Fig. 5a, lane 2 vs. lane 1). TPA enhanced the phosphorylation of this protein band by more than fivefold (Fig. 5a, lane 4 vs. lane 3). Without added PKC, no phosphorylation was observed whether TPA was present or not (Fig. 5a, lanes 1 and 3). Other PKC activators such as OAG with or without PS also significantly stimulated the PKC activity (Fig. 5a, lanes 6 and 8 vs. lane 5). In contrast, Ca2+ or PS alone added to PKC was not stimulatory (Fig. 5a, lanes 7 and 9). Unlike TPA, OAG/PS also stimulated the phosphorylation of several protein bands with molecular masses of <20 kDa (Fig. 5a, lane 9). Fig. 5b shows that the 66-kDa protein band also appeared to be a major PKC substrate protein in embryonic chick brain whose phosphorylation was prominently stimulated by TPA, OAG, or OAG/PS.

TPA stimulated the phosphorylation of a 66-kDa protein in intact ganglia

The in vivo phosphorylation of the 66-kDa protein was also demonstrated in intact ganglia. Figure 6 shows that a brief exposure of ganglia to TPA (20 or 200 nM) caused a fivefold stimulation of the phosphorylation of a 66-kDa protein in intact ganglia (lanes 2 and 3 vs. lane 1). In contrast, exposure of intact ganglia to dbcAMP, which activates PKA, did not lead to any stimulation of the phosphorylation of the 66-kDa protein (Fig. 6, lane 4 vs. lane 1). To further demonstrate that this 66-kDa protein is a substrate protein of endogenous PKC and that its phosphorylation may be involved in TPA-induced neurite outgrowth, we have examined effects of staurosporine. Figure 6 shows that staurosporine, when added at 50 nM together with TPA to the ganglia culture, reduced the in vivo phosphorylation of the 66-kDa protein (Fig. 6, lane 7 vs. lane 6), suggesting that the effect of staurosporine on the phosphorylation of the 66-kDa protein may be related to its inhibitory effect on neurite outgrowth in ganglia explants.

Biochemical characterization of the 66-kDa protein

To ensure that both the in vitro and in vivo phosphorylated 66-kDa proteins are indeed identical, we
FIG. 3. Effect of staurosporine on TPA-induced neurite outgrowth in chick embryonic sensory ganglia explants. Ganglia explants treated with 50 nM staurosporine (S) in the presence or absence of 200 nM TPA (T) during or after the 30-min exposure period as shown in the schematic representation (A–E). Additional control included ganglia explants treated with a combination of 50 nM staurosporine and 1 mM dbcAMP for 48 h (F). Ganglia explants were fixed and silver-stained. Representative photomicrographs corresponding to each treatment were shown.

eluted both proteins from excised gels and found that both proteins comigrated on 12% SDS-polyacrylamide gel (data not shown). When both the in vitro and in vivo [35S]methionine labeled 66-kDa proteins were subjected to partial proteolytic digestion with Staphylococcus aureus V8 protease, identical [35S]labeled peptide fragments with estimated sizes of 6.0 and 7.5 kDa were obtained (Fig. 7A), strongly suggesting that both proteins are the same. Phosphoamino acid analysis indicated that only the selenite residue was phosphorylated in the 66-kDa protein from ganglia tissue (Fig. 7B). The phosphorylated 66-kDa protein was quite acidic with a pI value of 4.5 (Fig. 7C). Interestingly, the pI of many major phosphoproteins phosphorylated by PKC are also acidic, ranging from 4.5 to 4.8 (Woodgett et al., 1987).

As an initial approach to identify the 66-kDa protein, we have attempted to immunoprecipitate the 66-kDa protein with antisera against known PKC substrate proteins. We could not detect any cross-reactivity between the 66-kDa protein and the antisera directed against GAP43 (Merri et al., 1988), or an 87-kDa bovine brain protein (Adere et al., 1988), or a 68-kDa neuronal protein (Fig. 7D, lane 2). However, we found that antisera against NF from rat spinal cord (Chiu et al., 1989) appeared to cross-react with the 66-kDa protein (Fig. 7D, lane 1).

DISCUSSION

In the present study, we have shown that a brief exposure to TPA for 30 min was sufficient to elicit morphological differentiation of neurites in chick embryo ganglia. Beyond this critical period, increasing the duration of exposure merely altered the fasciculation of the outgrowths, presumably through the promotion of side-to-side adhesive interactions between neighboring neurites (Hsu, 1989).

With the identification of this critical period of exposure to TPA, we have examined specific biochemical events underlying this early phase of neurite outgrowth. Of particular interest is the role of PKC in neurite outgrowth.

FIG. 5. In vitro phosphorylation of PKC substrate proteins in chick embryonic ganglia (A) and in chick brain homogenates (B). Homogenates of ganglia and brain tissues from 10-day chick embryos were prepared and processed for in vitro phosphorylation as described in Materials and Methods. Various additions were made as indicated in Protocol (c). When present (−), the additions were TPA (200 nM), OAG (1 mM), PIP2 (0.3 μg/ml), and CaCl2 (0.5 mM). Presence (+) or absence (−) of exogenously added PKC (0.1 unit) was also indicated.

FIG. 6. In vivo phosphorylation of intact ganglia. Phosphorylation of proteins in intact ganglia incubated in the presence or absence of TPA or dBcAMP as described in Materials and Methods. Lane 1, control; lane 2, 20 nM TPA; lane 3, 200 nM TPA; lane 4, 1 mM dBcAMP; lane 5, control; lane 6, 200 nM TPA; lane 7, 200 nM TPA plus 50 mM staurosporine.
Neurite outgrowth and protein phosphorylation

There appears to be as much evidence supporting the notion that neurite outgrowth is the consequence of PKC activation (Burges et al., 1986; Hall et al., 1988; Hashimoto and Higino, 1989) as there is evidence that down-regulation of the PKC is responsible for neurite outgrowth (Murphy et al., 1988; Reiss-hold and Neet, 1989; Girard and Kuo, 1990). Moreover, activation of PKC can produce adverse effects on hippocampal neurons, causing reduction in neuronal survival and regression of both axons and dendrites (Mattson et al., 1988). The fact that PKC exists in at least nine isoforms differing in their biochemical properties and localization has made the task of defining the functions of PKC difficult (Schuman, 1991). In addition, the existence of multiple intracellular signaling pathways within a neuron further complicates analysis of individual kinase systems (Mattson et al., 1988).

To evaluate the role of PKC activation in TPA-induced neuritogenesis, we have examined both the in vitro and in vivo phosphorylation pattern of substrate proteins of PKC. The significant findings are (1) that a brief treatment with TPA resulted in a three- to fivefold stimulation in the phosphorylation of a protein with an apparent molecular mass of 66 kDa in intact explanted ganglia (Fig. 6, lanes 2 and 3), and (2) that this 66-kDa protein was found to be a major PKC substrate protein in ganglia and brain extracts (Fig. 5). That the 66-kDa protein is of physiological significance in neurite outgrowth is also supported by the finding that inhibition of PKC by staurosporine not only blocked neurite outgrowth (Fig. 3), but also reduced the phosphorylation of the 66-kDa protein (Fig. 6, lane 7 vs. lane 6). It can be noted that the inhibitory action of staurosporine did not appear to be mediated by blocking PKA activity because the induction of neurites by db-cAMP was not disturbed by the presence of staurosporine (Fig. 3F). Previous studies have also shown that staurosporine inhibits neurite outgrowth in other neuronal systems. For example, at concentrations of 2-100 nM, staurosporine inhibited NGF induction of neurite formation and phosphorylation of specific proteins in PC12H cells (Hashimoto and Iagiaga, 1989). Campenot et al. (1991) have recently reported that staurosporine at 100 nM to 1 μM significantly slowed the outgrowth of distal neurites of neonatal sympathetic neurons treated with NGF.

Clarification of the role of PKC in neurite outgrowth in chick embryo ganglia can be gained through identification of its substrate proteins. Biochemical characterization of the 66-kDa protein indicates that it is acidic in nature and phosphorylated at the serine residue (Fig. 7). Positive immunoprecipitation with antisera raised against a novel rat NF subunit (Fig. 7D) is alluring, although more direct evi-
dence, including purification and amino acid se-
quencing of the 66-kDa protein, will be needed to estab-
lish the identity of this major PKC substrate pro-
tein in chick embryo gangli as an NF protein. NFs rep
resent a major constituent of neuronal cells (Wue
erke and Paksy, 1969). In fact, increase in NFs in
TPA-treated neurons was observed in a previous u
structural study (Hsu, 1983). Moreover, phosphoryla-
tion of NFs is implicated in numerous activities in-
cluding signal transduction and axonal growth (Nixon
and Shag, 1991). In summary, our study shows that
(1) a brief exposure (~30 min) of ex-
planted chick embryonic ganglia can cause an in-
crease in the phosphorylation of the 66-kDa protein, a
major PKC substrate protein identified in vitro, and
lead to subsequent neurite outgrowth, and (2) stauro-
osporine, a potent PKC inhibitor, inhibits both the
phosphorylation of the 66-kDa protein and the mor-
phological differentiation in explanted ganglia. These
results suggest the 66-kDa protein, possibly a NF-1like
protein, may be involved in TPA-induced neuro-
genesis.

Acknowledgment: We are grateful to Dr. F.-C. Chi, Al-
bert Einstein College of Medicine, Paul Rocke-
feller University, L. F. Sigal, Robert Wood Johnson Medi-
cal School, and K. F. Meiri, SUNY Health Science Center,
for kindly giving us, respectively, anti-NF66, anti-87-kDa,
anti-68-kDa, and anti-GAP43 antisera. We thank Drs. R. Porez,
K. Reuhl, and P. Yurchenco for useful discussions.
This work was supported by grant NS 21262 from the Na-
tonal Institute of Neurological and Communicative Dis-
orders and Stroke, NIH, and by gifts from the Charles and
Johanna Busch Memorial Fund. A preliminary ac-
count of this work has been presented [Mehb S., Hsu L.,
1009].

REFERENCES

Aderem A. A., Albert K. A., Korn M. M., Wang J. K. T., Green-
gard P., and Cline A. Z. (1980) Stimulus-dependent mito-
ylation of a major substrate for protein kinase C. Nature 323,
315-316.

Banks L. J. (1987) Protein kinase C activity is involved in laminin stimula-

differentiation of embryonic sympathetic ganglia cultured in the absence of exogenous nerve growth factor. Dev. Biol. 68,
568-578.

Bradford M. M. (1976) A rapid and sensitive method for the quanti-

